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Abstract. A new method of counting polygons on a graph embedded into a torus is described. It
is based on Vdovichenko’s random walk approach to planar Ising models which uses a connected
loop expansion. The Ising partition function of the graph is expressed as a single determinant with
some nonanalytic operation. The most generalized version of Vdovichenko’s formula for counting
polygons on a plane graph is also presented.

1. Introduction

This paper concerns an exact combinatorial method of counting polygons on an arbitraryfinite
graphembedded into atorus to evaluate the Ising partition function. Our main interest is in
taking the topology of the graph (in other words boundary conditions) correctly into account.
We shall propose a new algorithm which enables one to write down the partition function as a
single determinant with some nonanalytic operation (see equations (7) and (8) in section 4).

Historically, Kaufman [1] first obtained an explicit expression of the Ising partition
function for the finite-size toroidal square lattice (finite lattice wrapped on a torus) using her
algebraic method. In 1952, Kac and Ward [2] proposed a purely combinatorial approach to the
Ising problem and gave a determinant formula for the partition function which was exact in the
large lattice-size limit (that is, which could rederive Onsager’s result [3]); but they neglected
‘boundary effects’. Subsequent work by Potts and Ward [4] described a recipe for treating the
toroidal boundary conditions in the framework of Kac and Ward and successfully rederived
Kaufman’s result; they wrote down the partition function as a linear combination of four square
roots of determinants. In the early 1960s, Kasteleyn [5] and Fisher [6] independently studied
the statistics of dimers on lattices (and graphs) and discovered a relation between the dimer
problem and the Ising problem. (They established the Pfaffian method for the Ising problem;
the connection between the Ising problem and Pfaffians was first discovered by Hurst and
Green [7] through the use of fermions.) Kasteleyn used the device of Potts and Ward to treat
the toroidal boundary condition. (Furthermore, in the course of the study he (or they) noticed
that the device of Potts and Ward can be generalized for graphs drawn on surfaces of genus
greater than one; for a graph drawn on a surface of genusg one needs 4g determinants to
express the partition function—so commented the introduction in [8].)

Yet anothor combinatorial approach was proposed by Vdovichenko [9]. The basic idea
was to use (or establish) the connected loop expansion for the counting problem on planar
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square lattices. He succeeded in rederiving Onsager’s solution [3] to the model on the square
lattice in the thermodynamic limit; but he was not interested in boundary conditions.

The purpose of this paper is to present a new method, based on Vdovichenko’s, of
counting polygons on afinite graph embedded into a torus. We shall introduce two commuting
variables,a andb, which correspond to canonical basis cycles on a torus, in the definition of
Vdovichenko’s random walk transition matrix; then the exponential of the connected loop
expansion gives a certain loop expansion for a graph on a covering surface (in fact, a plane)
which is induced by the original graph drawn on the torus; finally, if we do a certain operation
regarding the variablesa and b on the loop expansion then we obtain the exact partition
function. This is an outline of our method which will be described in section 4. Section 3 is
devoted to exposing the most generalized version of Vdovichenko’s method forplanar graphs
because the author has not seen it in the literature.

2. Mathematical formulation of the problem

Let us begin with the precise definition of the Ising model on a finite graph. Some topological
concepts on graphs are also introduced.

2.1. The Ising model on a finite graph

A graph (or digraph)G is a triple of a setV (G) of vertices, a setE(G) of edges, and an
assignmentφG of an ordered pair(IG(e), TG(e)) of elements ofV (G) to each edgee ∈ E(G).
IG(e) andTG(e) are called the initial vertex and the terminal vertex of the edgee, respectively;
they are called endpoints ofe.

LetG = (V (G),E(G), φG) be a finite graph (that is, let bothV (G) andE(G) be finite).
Let CG denote the set of all functionsσ : V (G)→ {−1, 1}, α 7→ σα (an elementσ of CG is
called a spin configuration). LetK : E(G)→ C, e 7→ Ke be a function. The Ising model on
the graphG associated with the interactionK is defined by the partition function

Z = Z(K;G) =
∑
σ∈CG

exp

( ∑
e∈E(G)

KeσIG(e)σTG(e)

)
. (1)

Let us introduce a few more definitions. A graphH = (V (H),E(H), φH ) is called a
subgraph ofG if V (H) ⊂ V (G), E(H) ⊂ E(G) andφH = φG|E(H) hold. For each vertex
α ∈ G the number

degG α = #{e ∈ E(G)|IG(e) = α} + #{e ∈ E(G)|TG(e) = α}
is called the degree ofα inG. By apolygonP onG we shall mean a subgraph ofG in which
every vertex (ofP ) has even degree> 2 in P (hence, a polygon itself is an Eulerian graph,
and so it seems that anEulerian subgraphmay be a better naming; but we follow tradition).
LetP(G) denote the set of all polygons onG.

Substituting eKσσ = coshK(1 +σσ tanhK) we can rewrite (1) as

Z = 2#V (G)

{ ∏
e∈E(G)

(1− x2
e )
− 1

2

}
· S

S = S({xe|e ∈ E(G)}) =
∑

P∈P(G)

∏
e∈E(P )

xe

(2)

wherexe = tanhKe. (In order that this conversion makes sense we must assume each
Ke /∈ {iπ(m + 1

2)|m ∈ Z}.) From now on, we shall forget what thexe were and regardS
as a formal power series (rather than a polynomial) inxe. Thus, the original Ising problem (1)
has been converted to a combinatorial enumeration problem (2).
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2.2. Facts about topology of graphs

A finite graph can be regarded as a topological space in the standard manner: that is, each
edge is assumed to be homeomorphic to the real interval [0, 1] where the initial (respectively,
terminal) vertex corresponds to the endpoint zero (respectively, one) of the interval, and so on.
A continuous mapping of a graph into a topological space is called an embedding if the graph
and its image is homeomorphic.

It is known that any finite graph can be embedded smoothly into some compact orientable
surface (i.e., any graph can be drawn on the surface in such a way that the images of edges are
smooth arcs and do not have intersections). Only smooth embeddings will be considered in
this paper.

A graph which can be embedded into a surface of genusg but not into one of genusg−1 is
called a graph of genusg. A graph of genus zero is called planar (since if a graph is embeddable
into a sphere then it is embeddable into a plane and vice versa). For an embedding of a graph
into a plane the image of the graph in the plane (the figure of the graph drawn on the plane) is
called a plane graph. Analogously for an embedding of a graph into a torus the image of the
graph in the torus (the figure of the graph drawn on the torus) is called a torus graph.

In the next section we consider a plane graph and give a formula for the partition
function (2). In section 4 we consider a torus graph.

3. The partition function for a plane graph

Although the main purpose of this paper is to describe a new algorithm for a torus graph, we
consider here a plane graph. We present a generalized version of Vdovichenko’s formula for
the partition function for a plane graph. The result might be known to the specialists; however,
the author has not found it in the literature.

3.1. A generalized version of Vdovichenko’s random walk representation and a determinant
formula

LetG be a planar finite graph and letf be a smooth embedding ofG into a plane. From now
on we useM to denote #E(G).

Following Vdovichenko [9], we consider a walk on the plane graphf (G). Note that on
each edgee ∈ E(G), and therefore onf (e) as well, an orientation (from the initial vertex to the
terminal) is naturally defined by the homeomorphisme ' [0, 1] which was used to introduce
a topology on the graphG. Let us introduce an index setI = {e|e ∈ E(G)} t {−e|e ∈ E(G)}
consisting of 2M objects: the indexe ∈ I denotes a move along the edgef (e) in the +
direction and the index−e ∈ I denotes a move alongf (e) in the− direction. Letb ∈ I : by
−b we shall mean−e if b = e; e if b = −e. Forb, b′ ∈ I let us say that ‘a transitionb′ → b

is allowed’ if the terminal point ofb′ coincides with the initial point ofb andb 6= −b′. For
such a pairb, b′ ∈ I with b′ → b allowed we define the transition ‘probability’Wbb′ from the
‘state’b′ to b as follows:

Wbb′ = xb′ · exp

(
i

2

(
ϕbb′ +

∫
b′
k ds

))
(3)

whereϕbb′ is the angle ofb relative tob′ at the terminal point ofb′ (see figure 1). Note that
here symbolsb ∈ I are used to denote the corresponding oriented arcs (which are edges of
the plane graphf (G)) in the plane,k is the geodesic curvature of the arcb′, s is the arc length
parameter forb′, andxb′ = xe if b′ = e or −e (wheree ∈ E(G)). For pairsb, b′ for which
b′ → b are not allowed we defineWbb′ = 0.
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Figure 1. ϕbb′ and
∫
b′ k ds.

Now a straightforward generalization of Vdovichenko’s formula is stated.

Theorem. LetG be a planar finite graph and letf be a smooth embedding ofG into a plane.
LetW be a2M × 2M matrix whose(b, b′)-elements areWbb′ . Then the following formula
holds for (2):

S({xe|e ∈ E(G)}) = exp

(
−
∞∑
r=1

1

2r
trace(Wr)

)
. (4)

Vdovichenko [9] originally obtained a formula of this form for the square lattice in the
plane (neglecting boundary conditions). It is clear that his argument can be extended for any
plane graph whose edges are not necessarily straight segments.

In fact, ϕbb′ +
∫
b′ k ds in ourWbb′ measures the change in direction when a walk moves

along the arcb′ and turns tob at the terminal point ofb′ (see figure 1); hence, the argument
of the exponential in (4) correctly sums up the contributions from connected loops (the
planarity off (G) is essential here). Therefore, the exponential in (4) yields a summation
over ‘superpositions of connected loops’ (superpositions, for short). Contributions of the
superpositions having ‘repeated edges’ cancel in the sum; so what remains is a summation over
superpositions having no repeated edges which correspond to polygons; but, again, cancellation
occurs, and we obtain correct counting of polygons. (To see this, consider a polygonP havingp
intersections 1, . . . , p whose degree inP are 2mj , j = 1, . . . , p, respectively (mj are integers
> 2); then the number of superpositions which correspond toP (in other words, the number of
ways of decomposing the polygonP into connected loops) is(2m1−1)!! ×· · ·× (2mp−1)!!.
An intersection vertex of degree 2mhas 2m incident edges; the number of ways of decomposing
these 2m incident edges intom routes passing through the vertex is(2m − 1)!! (this is odd
whateverm is); ((2m−1)!!+1)/2 ways have even transversal intersections in a neighbourhood
of the vertex, and the remaining((2m−1)!!−1)/2 ways have odd intersections (the difference
between the two numbers is 1). Such a local property ensures that in the summation over the
(2m1− 1)!! × · · · × (2mp − 1)!! superpositions(2m1− 1)!! × · · · × (2mp − 1)!! − 1 terms
cancel out and what remains is just a single term which represents the correct weight for the
polygonP .)

As a corollary we obtain

S({xe|e ∈ E(G)}) = [det(I −W)]1/2. (5)
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Figure 2. Planar graphs embedded into the plane: (a) a graph with parallel edges; (b) a graph
with a closed edge; (c) then × m square lattice with cyclic boundary condition in the horizontal
direction; (d) anothor embedding of the same lattice. Arrows show reference orientations assigned
on edges.

For a proof it is sufficient to recall the fact that any matrix can be transformed into an upper-
triangle matrix by some similarity transformation.

Remark. The parametrization of the matrixW is not unique. For example, more symmetric
parametrization is possible:

Wbb′ = (xbxb′)1/2 · exp

(
i

2

(
ϕbb′ +

1

2

∫
b

k ds +
1

2

∫
b′
k ds

))
.

This parametrization has a symmetry:Wb′b = W−b,−b′ where the bar in the right-hand side
means complex conjugation applying only on coefficients of the formal power series (i.e.∑

k ck
∏
e x

ke
e =

∑
k ck

∏
e x

ke
e ).

3.2. Examples

Here are a few examples of plane graphs and the parametrizations (3) of the transition matrix
W .

Example 1. A plane graph with parallel edges is shown in figure 2(a). Letε = exp( i
2(
π
2 )).

The parametrization (3) for this graph is:Wi,a/xa = ε2, ε3, ε2 for i = d,−b,−c respectively;
Wi,b/xb = ε, ε−1, ε for i = d,−a,−c resp.;Wi,c/xc = 1, ε−2, ε−3 for i = d,−a,−b resp.;
We,d/xd = Wf,e/xe = ε; Wi,f /xf = 1, ε, ε2 for i = a, b, c resp.;Wi,−a/xa = ε−3, ε−2, ε−2

for i = b, c,−f resp.;Wi,−b/xb = ε, ε−1, ε−1 for i = a, c,−f resp.;Wi,−c/xc = ε2, ε3, 1
for i = a, b,−f resp.;Wi,−d/xd = 1, ε−1, ε−2 for i = −a,−b,−c resp.;W−d,−e/xe =
W−e,−f /xf = ε−1; andWi,i ′ = 0 for the other pairs(i, i ′).

Whenxi = x (constant) for alli ∈ E(G), the right-hand side of (4) yields

3x2 − 3
2x

4 + x6− 3
4x

8 + 3
5x

10− 1
2x

12 + 3
7x

14− 3
8x

16 + O(x17)

(hereO(x17) means that I calculated up to order16 in x) which successfully reproduces the
exactS:

1 + 3x2 + 3x4 + x6 + O(x17).

(The exactS is 1 + 3x2 + 3x4 + x6, a polynomial of degree-six.)
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Example 2. Figure 2(b) shows a plane graph with a closed edge. Again letε = exp( i
2(
π
2 )).

The parametrization (3) becomes:Wb,a/xa = ε; Wi,b/xb = ε, ε−1, 1 for i = c, e,−e resp.;
Wd,c/xc = Wa,d/xd = ε; Wi,e/xe = ε2, ε4, ε3 for i = c, e,−b resp.; W−d,−a/xa =
W−a,−b/xb = ε−1; Wi,−c/xc = 1, ε−1, ε for i = e,−b,−e resp.; W−c,−d/xd = ε−1;
Wi,−e/xe = ε−3, ε−2, ε−4 for i = c,−b,−e resp.; andWi,i ′ = 0 otherwise.

Whenxi = x (constant) for alli ∈ E(G), the right-hand side of (4) gives

x − 1
2x

2 + 1
3x

3 + 3
4x

4 + 1
5x

5− 1
6x

6 + 1
7x

7− 5
8x

8 + 1
9x

9− 1
10x

10 + O(x11)

which yields the exactS:

1 +x + x4 + x5 + O(x11).

(The exactS is 1 +x + x4 + x5.)

Example 3. A graph embeddable into a cylinder is embeddable into a plane (and vice versa).
So we can apply the formulae (4) and (5) for cylinder graphs.

As an example let us consider then×m square lattice with cyclic boundary condition in
the horizontal direction (i.e. the lattice is wrapped on a cylinder).

One possible embedding of the graph into the plane is shown in figure 2(c) where
only the edgesb1, . . . , bm (‘boundary edges’) have nonzero curvatures, each of which gives
exp( i

2

∫
k ds) = −1 in (3). Hence, in this case, we can restate the prescription (3) as follows:

for allowedb′ → b Wbb′ = x̃b′ · exp( i
2ϕbb′) wherex̃b′ = −xb′ if b′ goes across the boundary

(i.e. if b′ = bi for somei = 1, . . . , m in figure 2(c)) and̃xb′ = xb′ otherwise; in other words
we can think that each edge is a straight segment (i.e. as if it has zero curvature) and/but the
edges that go across the boundary acquire an extra factor(−1).

Of course, other embeddings yield different parametrizations. It is easily seen that the
following gives another parametrization for the samen × m square lattice with the cyclic
boundary condition (see figure 2(d)):Wbb′ = x̃b′ · exp( i

2ϕbb′) wherex̃b′ = exp(iπ/n) · xb′ for
right-directed horizontal edgesb′, x̃b′ = exp(−iπ/n) · xb′ for left-directed horizontalb′, and
x̃b′ = xb′ for vertical b′. This parametrization has translation invariance in the horizontal
direction.

Let us give an explicit example of computations for the3×3 lattice withxi = x (constant).
Both parametrizations give

3x3 + 6x4 + 12x5 + 15
2 x

6− 21x8− 71x9− 132x10− 132x11 + · · · − 166 821
7 x21 + O(x22)

for logS (4). It yields the exactS:

1 + 3x3 + 6x4 + 12x5 + 12x6 + 18x7 + 33x8 + 28x9 + 12x10 + 3x11 + O(x22)

(the exact one is, of course, a polynomial of degree11).

It seems that the observation of the first parametrization of this example leads to a recipe
for torus graphs which will be described in the next section.

4. The partition function for a torus graph

This is the main section of this paper. We shall describe a new algorithm for counting polygons
on a given torus graph which takes its topology (or boundary conditions) correctly into account.
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Figure 3. Dissecting the torus.

4.1. A random walk representation and a determinant formula

LetG be a finite graph which can be embedded into a torus (hence its genus is6 1). Letf be
a smooth embedding ofG into a torus.M = #E(G).

Again we want to consider a walk on the torus graphf (G). In order to give a transitoin
matrixW we consider a covering surface of the torus and the lift of the graphf (G) drawn on
the covering surface.

To do this let us dissect the torus in some standard way: that is, cut it open on two disjoint
simple closed curves,A andB (they form a canonical basis of cycles on the torus), both
beginning and ending at the same point, so that what remains is a rectangle or a ‘tile’ (see
figure 3). We require that the two closed curves should be chosen so that (1) they do not pass
through any vertex off (G); and (2) they intersect transversely with edges off (G). The torus
graphf (G) induces a figure on the rectangle tile. Prepare an infinite number of copies of the
tile and let them cover the whole plane. Then we obtain a graph drawn on the plane which was
induced fromf (G) on the torus; let us call the (infinite) graph drawn on the plane alift f̃ (G)
of the torus graphf (G).

An orientation on each edgef (e), the set of all possible statesI = {e|e ∈ E(G)}t{−e|e ∈
E(G)} of walks, and the meaning of allowed transitionsb′ → b are defined in the same way
as in the preceding section. Note that the orientation onf (e) naturally induces an orientation
on its lift. The transition matrixW for a walk on the torus graphf (G) is defined as follows:
for an allowed transitionb′ → b (whereb, b′ ∈ I )

Wbb′ = x̃b′ · exp

(
i

2

(
ϕbb′ +

∫
b′
k ds

))
(6)

whereϕbb′ is the change in angle of the tangent vectors when a walk moves fromb′ to b at the
terminal vertex ofb′ measured on the lift, k the geodesic curvature of the arcon the liftwhich
corresponds tob′, ands the arc length parameter for the lift corresponding tob′; the definition
of x̃b′ is completely new: let us introduce twocommutingvariablesa andb and define

x̃b′ = ambnxe
if the edgeb′ transverses the closed curveA m times from left to right side (a transversing in
the opposite direction is counted as−1), transverses the curveB n times from left to right, and
b′ = e or−e. The variablesa andb will play an essential role in our formalism. Of course,
we defineWbb′ = 0 if b′ → b is not allowed.

Now we can describe the main formula.

Conjecture. LetG be a finite graph embeddable into a torus and letf be a smooth embedding
ofG into a torus. LetW be a2M × 2M matrix defined by (6). (Note thatW contains the two
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Figure 4. Torus graphs: (a) a bouquet; (b) the complete graph on five points; (c) the square lattice
with cyclic boundary conditions in both directions. Each figure shows a figure drawn on a tile
which was obtained by dissecting the torus.

commuting variablesa andb.) Then the following formula holds for (2):

S({xe|e ∈ E(G)}) = H
(

exp

(
−
∞∑
r=1

1

2r
trace(Wr)

))
. (7)

The definition of the operationH is

H
(∑

k

ck
∏
e

xkee

)
=
∑
k

H(ck)
∏
e

xkee

(eachck is a Laurent polynomial ina andb) and

H
(∑

cmna
mbn

)
=
∑

(−1)(m,n)cmn

[cmn ∈ C] where(m, n) denotes the greatest common divisor of the integers.

A heuristic explanation is as follows: the sum in the exponential in (7) expresses
contributions from connected loops; hence the exponential itself is a certain weighted
summation of polygons oñf (G), the lift of f (G) drawnon the plane; if we apply on it the
operationH then all ‘unwilling terms’ which do not appear in (2) vanish and all coefficients
of the remaining terms become correct ones. (Here(m, n) plays a role of ‘winding number’
of a curve on the torus.)

Unfortunately, we do not have a rigorous proof of this statement. However, for the
simplest nontrivial torus graph, which is shown in figure 4(a), we shall see in the next section
that formula (7) really holds; this observation bears out the conjecture.

As a corollary we obtain a determinant formula:

S({xe|e ∈ E(G)}) = H([det(I −W)]1/2). (8)

4.2. Examples

Let us show a few examples of torus graphs which we have used to check our formulae (7)
and (8).

Example 1. Consider a graph consisting of one vertex and two closed edges (such a graph is
called a ‘bouquet’) and consider an embedding as shown in figure 4(a). This is the simplest
nontrivial torus graph. Let us show explicit calculations to demonstrate how the formulae (7)
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and (8) work. Assign variablesx, y to the horizontal and vertical edge, respectively, and let
ε = exp( i

2(
π
2 )); the transition matrixW is


→ ax ε−1by 0 εb−1y

↑ εax by ε−1a−1x 0
← 0 εby a−1x ε−1b−1y

↓ ε−1ax 0 εa−1x b−1y


(arrows indicate indices). Then−∑ 1

2r traceWr in (7) is

−1

2

(
1

a
+ a

)
x − 1

2

(
1

b
+ b

)
y − 1

4

(
1

a2
+ a2

)
x2 − 1

2

(
1

ab
+
a

b
+
b

a
+ ab

)
xy

−1

4

(
1

b2
+ b2

)
y2 − 1

6

(
1

a3
+ a3

)
x3− 1

2

(
1

a2b
+
a2

b
+
b

a2
+ a2b

)
x2y

−1

2

(
1

ab2
+
a

b2
+
b2

a
+ ab2

)
xy2 − 1

6

(
1

b3
+ b3

)
y3− 1

8

(
1

a4
+ a4

)
x4

−1

2

(
1

a3b
+
a3

b
+
b

a3
+ a3b

)
x3y

+

(
1− 1

2

(
1

a2
+ a2

)
− 1

2

(
1

b2
+ b2

)
− 3

4

(
1

a2b2
+
a2

b2
+
b2

a2
+ a2b2

))
x2y2

−1

2

(
1

ab3
+
a

b3
+
b3

a
+ ab3

)
xy3− 1

8

(
1

b4
+ b4

)
y4 + · · · .

This yields fore−
∑ 1

2r traceWr

1− 1

2

(
1

a
+ a

)
x − 1

2

(
1

b
+ b

)
y +

(
1

4
− 1

8

(
1

a2
+ a2

))
x2

−1

4

(
1

ab
+
a

b
+
b

a
+ ab

)
xy

+

(
1

4
− 1

8

(
1

b2
+ b2

))
y2 +

1

16

(
− 1

a3
− a3 +

1

a
+ a

)
x3

+

(
− 3

16

(
1

a2b
+
a2

b
+
b

a2
+ a2b

)
+

3

8

(
1

b
+ b

))
x2y

+

(
− 3

16

(
1

ab2
+
a

b2
+
b2

a
+ ab2

)
+

3

8

(
1

a
+ a

))
xy2

+
1

16

(
− 1

b3
− b3 +

1

b
+ b

)
y3

+

(
− 5

128

(
1

a4
+ a4

)
+

1

32

(
1

a2
+ a2

)
− 1

64

)
x4

+

(
− 5

32

(
1

a3b
+
a3

b
+
b

a3
+ a3b

)
+

5

32

(
1

ab
+
a

b
+
b

a
+ ab

))
x3y

+

(
− 15

64

(
1

a2b2
+
a2

b2
+
b2

a2
+ a2b2

)
− 1

32

(
1

a2
+ a2

)
− 1

32

(
1

b2
+ b2

)
+

17

16

)
x2y2
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+

(
− 5

32

(
1

ab3
+
a

b3
+
b3

a
+ ab3

)
+

5

32

(
1

ab
+
a

b
+
b

a
+ ab

))
xy3

+

(
− 5

128

(
1

b4
+ b4

)
+

1

32

(
1

b2
+ b2

)
− 1

64

)
y4 + · · · . (9)

(We computed up to eigth degree; to save space we have shown here results up to the fourth.)
As for the determinant formula (8) we have

det(I −W) = 1−
(

1

a
+ a

)
x −

(
1

b
+ b

)
y + x2 + y2 +

(
1

a
+ a

)
xy2 +

(
1

b
+ b

)
x2y + x2y2

which again yields (9) for[det(I −W)]1/2. Applying on (9) the operationH we have

1 +x + y + xy

(up to eighth degree) which coincides with the exactS (2).

The computations on this example imply that formula (7) correctly takes account of the
topology of torus graphs.

Example 2. The complete graph on five points, denoted byK5, is a graph of genus one.
Consider an embedding of it into a torus as shown in figure 4(b). For this embedding formula (7)
(and also (8)) gives

S = 1 + 10x3 + 15x4 + 12x5 + 15x6 + 10x7 + x10

(we have computed up to order 20) which coincides with the exact one.

Example 3. Consider then × m square lattice with cyclic boundary conditions in both
directions and an embedding into a torus as shown in figure 4(c).

We have tested the formulae (7) and (8) for several small size lattices (3× 3, 3× 4, 3×
5, 4× 4); they all gave exact results.

Now consider the generaln × m lattice. LetW̃ be a matrix given by (6) but with the
definition ofx̃b′ changed to

x̃b′ =


a1/nxe for horizontal right-directedb′

a−1/nxe for horizontal left-directedb′

b1/mxe for vertical up-directedb′

b−1/mxe for vertical down-directedb′

(whereb′ corresponds to the edgee). Then, as is easily seen,traceW̃ r = traceWr for
any integerr; hence, we can use this̃W for our transition matrix. The use of̃W has an
advantage becausẽW has a (block-)translational invariance in both direction and hence can
be (block-)diagonalized by a Fourier-like transform, just as was done in [9]. Hence formula (8)
gives

S =
(

sinh 2K

(coshK)4

) 1
2nm

×H
({ ∏

p∈Zn,q∈Zm

(
(cosh 2K)2

sinh 2K

−1

2
[a−

1
n ωpn + a

1
n ω−pn + b−

1
m ωqm + b

1
m ω−qm ]

)}1
2
)

whereωk = exp(2π i/k).
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5. Concluding remarks

In section 3 we have described the most generalized version of Vdovichenko’s formula for
counting polygons on anyplane graph.

In section 4 we have described a new algorithm for counting polygons on anytorus graph
which enables one to write down the Ising partition function for the torus graph. The principle
is summarized as follows: in order to count connected loops we considered a random walk
on the graph (following the original idea of Vdovichenko); in order to use a connected loop
expansion we considered a covering surface of the torus, which was actually a plane, and a
plane graph on it associated with the original torus graph; then a certain nonanalytic operation,
which took account of the topology of the torus, yielded the correct partition function.

There should be a relation between Potts and Ward’s method [4, 5] and ours. An
investigation into this point, as well as a rigorous proof of the statement in section 4, are
left for a further study.
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